Stable White Light Electroluminescence from Highly Flexible Polymer/ZnO Nanorods Hybrid Heterojunction Grown at 50°C

نویسندگان

  • A Zainelabdin
  • S Zaman
  • G Amin
  • O Nur
  • M Willander
چکیده

Stable intrinsic white light-emitting diodes were fabricated from c-axially oriented ZnO nanorods (NRs) grown at 50 degrees C via the chemical bath deposition on top of a multi-layered poly(9,9-dioctylfluorene-co-N-(4-butylpheneylamine)diphenylamine)/poly(9,9dioctyl-fluorene) deposited on PEDOT:PSS on highly flexible plastic substrate. The low growth temperature enables the use of a variety of flexible plastic substrates. The fabricated flexible white light-emitting diode (FWLED) demonstrated good electrical properties and a single broad white emission peak extending from 420 nm and up to 800 nm combining the blue light emission of the polyflourene (PFO) polymer layer with the deep level emission (DLEs) of ZnO NRs. The influence of the temperature variations on the FWLED white emissions characteristics was studied and the devices exhibited high operation stability. Our results are promising for the development of white lighting sources using existing lighting glass bulbs, tubes, and armature technologies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable White Light Electroluminescence from Highly Flexible Polymer/ZnO Nanorods Hybrid Heterojunction Grown at 50 degrees C

Stable intrinsic white light–emitting diodes were fabricated from c-axially oriented ZnO nanorods (NRs) grown at 50 C via the chemical bath deposition on top of a multi-layered poly(9,9-dioctylfluorene-co–N-(4butylpheneylamine)diphenylamine)/poly(9,9dioctyl-fluorene) deposited on PEDOT:PSS on highly flexible plastic substrate. The low growth temperature enables the use of a variety of flexible ...

متن کامل

Zinc oxide nanorods/polymer hybrid heterojunctions for white light emitting diodes

Zinc oxide (ZnO) with its deep level defect emission covering the whole visible spectrum holds promise for the development of intrinsic white lighting sources with no need of using phosphors for light conversion. ZnO nanorods grown on flexible plastic as substrate using a low temperature approach (down to 50 o C) were combined with different organic semiconductors to form hybrid junction. White...

متن کامل

Effect of the polymer emission on the electroluminescence characteristics of n-ZnO nanorods/p-polymer hybrid light emitting diode

Hybrid light emitting diodes (LEDs) based on zinc oxide (ZnO) nanorods and polymers (single and blended) are fabricated and characterized. The ZnO nanorods were grown by the chemical bath deposition method at 50 o C. Three different LEDs, either with blue emitting, orange-red emitting or their blended polymer together with ZnO nanorods were fabricated and studied. The current-voltage characteri...

متن کامل

Heterojunctions between zinc oxide nanostructures and organic semiconductor

Lighting is a big business, lighting consumes considerable amount of the electricity. These facts motivate for the search of new illumination technologies that are efficient. Semiconductor light emitting diodes (LEDs) have huge potential to replace the traditional primary incandescent lighting sources. They are two basic types of semiconductor LEDs being explored: inorganic and organic semicond...

متن کامل

Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices

Zinc oxide (ZnO) is a strong luminescent material, as are several polymers. These two materials have distinct drawbacks and advantages, and they can be combined to form nanostructures with many important applications, e.g., large-area white lighting. This paper discusses the origin of visible emission centers in ZnO nanorods grown with different approaches. White light emitting diodes (LEDs) we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010